

Application Note
Virtual Prototyping in PSpice Page 1 of 80

Title: Virtual Prototyping in PSpice

Product: PSpice

Summary: How to define C/C++, SystemC and

Verilog-A components in PSpice.
Extension to Hardware in the Loop using
Arduino

 Version up 17.2

Autor/Datum: Roberto Gandía / 22.07.2016

Table of Contents

1 Overview .. 2

1.1 Contents of this document ... 2

1.2 How to use this AN? .. 2

2 Device Modeling Interface Template Code Generator .. 4

2.1 Required Software and Setup ... 4

2.2 How to use Device Modeling Interface? .. 5

3 Examples ..10

3.1 Digital Power Supply using a C/C++ defined PWM ...10

3.2 FIR Filter using SystemC..26

3.3 Noise Filter using a MATLAB Block ..32

3.4 Capacitor behaviour analysis defined using VerilogA-ADMS42

3.5 Debugging ..51

3.6 Hardware in the Loop using Arduino ..60

Application Note
Virtual Prototyping in PSpice Page 2 of 80

1 Overview

Virtual prototyping is a method in the process of product development, which allows to
validate a design before making a physical prototype. Since V17.2, PSpice offers the
opportunity to simulate System Designs using different kind of abstractions thanks to the
Device Modeling Interface. With GUI, users can define C/C++, SystemC, and Verilog-A
components and simulate them in simulator.

1.1 Contents of this document

• How to use Device Modeling Interface.

• Setup for Visual Studio Community 2013.

• How to integrate C/C++, SystemC and Verilog-A models to be simulated in PSpice.

• Debug of C/C++, SystemC and VerilogA devices.

• Importation of MATLAB Blocks in PSpice.

• Hardware in the Loop using Arduino.

1.2 How to use this AN?

This document explains the steps for integrating C/C++, SystemC and Verilog-A models with
PSpice Device Model Interface (DMI), so that they can be used for PSpice simulations.

This document is valid up Release 17.2. License required for:

a. PSpice DMI – Model development capability:

• OrCAD PSpice Designer OR

• OrCAD PSpice Designer Plus OR

• Allegro PSpice Simulator

b. PSpice DMI – Model Simulation capability:

• OrCAD PSpice Designer Plus OR

• Allegro PSpice Simulator

Examples available:

• Digital Power Supply using C/C++ defined PWM.

• FIR Filter using SystemC.

• Capacitor behavior analysis defined with Verilog-A.

• Noise Filter using a MATLAB Block.

• Hardware in the Loop using Arduino.

The structure of the attached ZIP file is divided in 6 folders:

Application Note
Virtual Prototyping in PSpice Page 3 of 80

- Each folder at the same time is divided in two folders:

- You will work with the folder called “To_be_completed”.
- In each example the reference <directory> is used. It means the directory where you

place this ZIP File.

NOTE: You can find more specific information clicking on Start � All Programs � Cadence
Release 17.2-2016 � Documentation � Cadence Help. Search for the next documents:

- pspDMIRef

o Information about the functions exposed by PSpice Engine and by the DLL
files.

- pspcref

o Information about the meaning of the different parameters you can define for
DMI components.

Application Note
Virtual Prototyping in PSpice Page 4 of 80

2 Device Modeling Interface Template Code
Generator

2.1 Required Software and Setup

This module covers the information on the setup required for compilation of C/C++, SystemC
and Verilog-A models in PSpice.

• SYSTEMC is an environment Variable you need to use if you want to define SystemC
components. For that, setup SYSTEMC environment variable pointing to the
SystemC installation path.

%CDSROOT%\tools\pspice\tclscripts\pspModelCreate\SystemC

e.g.

C:\Cadence\SPB_17.2\tools\pspice\tclscripts\pspModelCreate\SystemC

• Visual Studio Community 2013

It is a free software that you can download easily here:

https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx

You will be forwarded to Visual Studio Community 2013 Website. Click on Download
and install it.

After the installation, open the software and verify it works.

NOTE: It works with VS Express as well, but the project will not be generated
automatically.

Application Note
Virtual Prototyping in PSpice Page 5 of 80

• Arduino IDE (Only in case you want to do Hardware in the Loop)

o You can download the software from Arduino Website.
o You also need the Hardware, specifically the Arduino Starter Kit.

2.2 How to use Device Modeling Interface?

Device Modeling Interface Template Code Generator can be launched from Model Editor in
PSpice Accessories.

Application Note
Virtual Prototyping in PSpice Page 6 of 80

clicking on Model � DMI Template Code Generator.

Application Note
Virtual Prototyping in PSpice Page 7 of 80

This interface is divided into 4 sections:

• Part Details:
o Part Name: Name for the function you want to define. For example, Pulse

Width Modulation.
o Part Type: Define the type of component you want to describe.

• Ports:
o Interface Type: Classify your component as Clocked or as Combinatorial.

Application Note
Virtual Prototyping in PSpice Page 8 of 80

o Port Entry: Define the inputs and the outputs of your device through an excel
file or writing down them directly.

• Parameters:
o Global Parameters: Parameters that can be used by all the components which

define them.

o Device Parameters: Parameters used just for a particular device.

Application Note
Virtual Prototyping in PSpice Page 9 of 80

• Output: Define the name for your DLL, the log file where information of the generation
of the DLL is going to be written and the directory where it is going to be saved.

Application Note
Virtual Prototyping in PSpice Page 10 of 80

3 Examples

3.1 Digital Power Supply using a C/C++ defined PWM

This module shows a Digital Power Supply design, which uses models with different levels of
abstraction.

This example demonstrates:

• The generation of template code for a DMI Model and the implementation of a Digital
PWM Control block.

• Simulation of the DMI model in the context of a Digital Power Supply circuit.

Steps:

1. Launch Model Editor
2. Select Menu Item Model � DMI Template Code Generator
3. Enter the data as follows:

Application Note
Virtual Prototyping in PSpice Page 11 of 80

4. Click on CSV File to enter ports using a csv file

5. Browse to the csv file portsv.csv

You will find this file in

<directory>\Circuits\Digital Power Supply\To_be_completed\Ports

The ports are automatically read from the csv file and populated in the form as above.

6. Review the port list and click OK.
7. Enter Global parameters as shown below:

Application Note
Virtual Prototyping in PSpice Page 12 of 80

8. Click OK.
9. Before generating the whole files, browse to directory to locate them.

<directory>\Circuits\Digital Power Supply\To_be_completed\DMI_Code

NOTE: This file does not generate any DLL. The DLL will be generate it in Visual
Studio when the code is compiled.

10. Click OK and generate the files:

NOTE: A message might appear indicating that it could not be possible to find the lib.
This message can be clicked away and ignored.

Application Note
Virtual Prototyping in PSpice Page 13 of 80

11. The new created files are located in a new folder called PWMControl. You can find
this folder in

<directory>\Circuits\Digital Power Supply\To_be_completed\DMI_Code

In this folder, the created files are organized in two folders:

In code you will find the Visual Studio project files. With them you will generate the
DLL:

In lib you will find the PSpice Model (PWMControl.lib).

Application Note
Virtual Prototyping in PSpice Page 14 of 80

Note: The generated model already points to the PSpice-DMI dll PWMControl.dll,
although it still has to be generated – For that, the next step is to describe the model
code and generate the dll.

12. Launch Visual Studio Community 2013
13. Click File� Open� Project/Solution

Search for PWMControl.vcxproj located in:

<directory>\Circuits\DigitalPowerSupply\To_be_completed\DMI_Code\PWMControl\c
ode

14. Change the default configuration on the top to Release x64

Application Note
Virtual Prototyping in PSpice Page 15 of 80

and Build the solution to verify that there are no build issues.

15. Edit the file PWMControl_user.cpp

16. Go to evaluate function by searching for the text “pspPWMControl::evaluate”. Now,
search for “// LOGIC TO BE IMPLEMENTED BY USER”

This is the place where you will add the model evaluation code.

17. Open the file COPY.TXT located in

<directory>\Circuits\DigitalPowerSupply\To_be_completed\DMI_Code

Application Note
Virtual Prototyping in PSpice Page 16 of 80

copy the code that there is inside and paste it just after //LOGIC TO BE
IMPLEMENTED BY USER.

18. Save the project.

19. This code uses some extra variables which need to be declared – edit file
pspPWMControl.h and add the following lines at the end before the last closing
brace.

Application Note
Virtual Prototyping in PSpice Page 17 of 80

20. Build the solution again. The model dll is now built with the required model evaluation
code.

Application Note
Virtual Prototyping in PSpice Page 18 of 80

NOTE: Do not consider the warning.

21. Go to

<directory>\Circuits\DigitalPowerSupply\To_be_completed\DMI_Code\PWMControl\c
ode\x64\Release

and verify that the DLL and the PDB has been generated:

22. Open OrCAD Capture and click File� Open� Project.
23. Open the Capture project located in

<directory>Circuits/Digital_Power_Suppy/To_be_completed/circuit/Power_Supply_inc
omplete.dsn:

Application Note
Virtual Prototyping in PSpice Page 19 of 80

Click on the component Software Controlled Switch with RMB and click on Descend
Hierarchy:

Now you have to create the Symbol for the PSpice component you have just
described: PWM Block

24. Open Model Editor and click on Done.

Application Note
Virtual Prototyping in PSpice Page 20 of 80

25. Click on File � Open and look for PWMControl.lib

<directory>\Circuits\DigitalPowerSupply\To_be_completed\DMI_Code\PWMControl\li
b

26. Click on File � Export to part library and click OK.

With this option you are creating the schematic part for this PSpice component
automatically:

27. Come back to the Schematic and place the symbol you have just created, modifying
this symbol as seen below or using the one from

 <directory>\Circuits\Digital Power Supply\To_be_completed\Library\Capture

Application Note
Virtual Prototyping in PSpice Page 21 of 80

28. Place the symbol and connect it in the circuit:

29. Define a Transient Analysis Simulation and call it Trans:

30. Define Run to Time = 5ms

Application Note
Virtual Prototyping in PSpice Page 22 of 80

31. Click on Configuration Files. You have to import the PSpice model for the component
you have just created and the already defined ones. Click on Browse, select one by
one and click on Add to Design.

You will find your library PWMControl.lib in:

<directory>/Circuits/DigitalPowerSupply/To_be_completed/DMI_Code/PWMControl/li
b

You will find the other libraries in
<directory>/Circuits/Digital Power Supply/To_be_completed/Library/Capture:

a. Noisecomp.lib
b. Matlab1.lib
c. Matlab.lib

Application Note
Virtual Prototyping in PSpice Page 23 of 80

32. Before running the simulation, do NOT forget to associate all the .DLL’s, which
describe the behaviour of your components. For that, place the .DLL and the .PDB in
the Simulation Profile Folder that you have just created:

<directory>\Circuits\DigitalPowerSupply\To_be_Completed\circuit\Power_Supply_Un
complete-PSpiceFiles\SCHEMATIC1\Trans

NOTE:

Your created .DLL is in:
<directory>/Circuits/DigitalPowerSupply/To_be_completed/DMI_Code/PWMControl/c
ode/x64/Release

The other one is in:
<directory>/Circuits/DigitalPowerSupply/To_be_completed/Library/DLL

NOTE: There is another option to store your created DLL’s and PDB’s using an
Environment Variable. It allows you to use a central library for all your DLL’s.

In this Application Note however, where are placing them in the Simulation Profile
Folder.

33. Click on Run:

Application Note
Virtual Prototyping in PSpice Page 24 of 80

34. Analyze the results. Click on PSpice � Markers � Voltage Level and place it in the
node called VOUT.

You will be able to see this results in the Probe Window:

Application Note
Virtual Prototyping in PSpice Page 25 of 80

35. In Probe Window click on Plot � Add plot to Window.

36. Go to OrCAD Capture again, and place another Voltage Marker in the wire called
PW:

37. Visualize the results in the Probe Window:

Application Note
Virtual Prototyping in PSpice Page 26 of 80

NOTE: In this case everything has worked perfectly, but most times it is necessary to
debug for detecting error and mistakes in the source code description. More information
in section 3.3.

3.2 FIR Filter using SystemC

This module explains definition and simulation of a SystemC model using PSpice-DMI.

It demonstrates:

- An example of a FIR model written in SystemC.
- Generation of DMI Template code for SystemC models using Model Editor.

Steps:

1. Launch Model Editor
2. Select Menu Item Tools/DMI Template Generator
3. Enter data as below:

Application Note
Virtual Prototyping in PSpice Page 27 of 80

DLL Location: <directory>\Circuits\FIR_Filter\To_be_completed\DMI_Code

Do not click OK.

4. Click on Ports radio button to enter the following port data:

Application Note
Virtual Prototyping in PSpice Page 28 of 80

5. Click OK to close the Port Entry and click OK to generate the code.

6. The PSpice library for the generated model is created automatically. The vector ports
are expanded to PSpice-supported scalar ports in the lib file:

This library points to the PSpice-DMI dll FIR.dll – The next step is to complete the
model code and generate this dll.

7. Launch Visual Studio Community 2013 and click on Open Project.

Select
<directory>\Circuits\FIR_Filter\To_be_completed\DMI_Code\FIR\code\pspSysCFIR.v
cxproj

8. Change the default configuration on the top to Release x64, and Build the solution to
verify that there are no build issues.

NOTE: There are many warnings, but you can omit them.

Application Note
Virtual Prototyping in PSpice Page 29 of 80

9. Edit SysCFIR.cpp

Search for SysCFIR::entry function in SysCFIR.cpp and uncomment the sample code
inside the function clicking on Edit � Advanced � Uncomment. This code
implements an FIR filter using SystemC.

10. Edit pspSysCFIR.cpp:

11. Build the solution again to generate the PSpice-DMI dll.

12. Open Model Editor from PSpice Accessories, click File� Open and load FIR.lib from

<directory>\Circuits\FIR_Filter\To_be_completed\DMI_Code\FIR\lib

13. Click File � Export to Part Library and click OK.

Application Note
Virtual Prototyping in PSpice Page 30 of 80

14. Copy FIR.lib and FIR.olb files and paste them in
<directory>\Circuits\FIR_Filter\To_be_completed\Circuit\Library

15. Launch OrCAD Capture and open the project located in
<directory>\Circuits\FIR_Filter\To_be_Completed\Circuit

16. Click on Add Library, select FIR.olb and place the FIR component:

17. Create a new Simulation Profile called Trans.
18. Complete the new Simulation Settings with this values:

Application Note
Virtual Prototyping in PSpice Page 31 of 80

19. Click on Configuration Files and add to Design the library you have just created:

20. Copy the DLL from

<directory>/Circuits/FIR_Filter/To_be_completed/DMI_Code/FIR/code/x64/Release

And copy it in

<directory>/Circuits/FIR_Filter/To_be_completed/Circuit/FIR_Filter-
PSpiceFiles/SCHEMATIC1/Trans

21. Simulate.

Application Note
Virtual Prototyping in PSpice Page 32 of 80

You will get this error:

To solve it, RMB on the FIR component and click on Edit PSpice Model.

22. Make next modifications and do not forget to write down + at the beginning of the new
line:

23. Close and click OK to save.
24. Simulate again and analyze the results (plot each input and each output).

NOTE: Notice that the input signal is coming from text format placed on the
Schematic.

3.3 Noise Filter using a MATLAB Block

This module explains a simple example of Analog Behavioural Model imported into PSpice
as a DMI Model. This module takes the example of a MATLAB averaging filter to
demonstrate this.

The details of generating the code may be found at

Application Note
Virtual Prototyping in PSpice Page 33 of 80

http://www.mathworks.com/help/coder/examples/averaging-
filter.html?prodcode=ME&language=en

This Lab demonstrates:

- An example of MATLAB generated code imported to PSpice as a DMI model.
- Generation of a template code for an Analog behavioural model and its use in a

PSpice simulation.

Steps:

1. Launch Model Editor
2. Select Menu Item Model � DMI Template Code Generator
3. Enter the data as follows:

Click on Browse to save the code in

Application Note
Virtual Prototyping in PSpice Page 34 of 80

<directory>\Circuits\MATLAB_Block_Simulation\To_be_combpleted\DMI_Code

Do NOT click on OK.

4. Click on Terminal Entry – for the selected predefined model type, the number of
terminals is fixed at 4.

5. Click OK and generate the code.
6. Verify that the code and the lib folder are created correctly:

<directory>\Circuits\MATLAB_Block_Simulation\To_be_completed\DMI_Code\NoiseF
ilter\code

NOTE: the DLL will not be created until you compile the code in Visual Studio.

<directory>\Circuits\MATLAB_Block_Simulation\To_be_completed\DMI_Code\NoiseF
ilter\lib

Application Note
Virtual Prototyping in PSpice Page 35 of 80

7. Launch Visual Studio Community 2013 and open the file NoiseFilter.vcxproj

The project is located in

<directory>\Circuits\MATLAB_Block_Simulation\To_be_completed\DMI_Code\NoiseF
ilter\code

8. Change the configuration on the top as follows:

Application Note
Virtual Prototyping in PSpice Page 36 of 80

9. Select Menu Item Build/Build Solution and verify that the Build completes
successfully.

10. The PSpice-DMI template code is ready. Now, the model behaviour for the exported
averaging filter (using C-Coder in MATLAB) needs to be inserted in the code.

11. Open NoiseFilter_user.cpp for editing:

Under the line:
#include "pspNoiseFilter.h"

Add the text:

extern "C" {

#include "../../averaging_filter/averaging_filter.h"

}

This includes the MATLAB generated header file so that its Averaging filter function
can be accessed.

12. Edit the load function as follows:

Under the line:

double gain = 0.0;

Add the text:

This code will update the state vector with the latest input value, and call the MATLAB
averaging_filter function to compute the gain.

Application Note
Virtual Prototyping in PSpice Page 37 of 80

13. Finally, add the MATLAB averaging_filter file to the project. In the solution Explorer,
RMB on NoiseFilter and select Menu Item Add – Existing Item

14. Browse to ../../averaging_filter and select the averaging_filter.c

15. Build Solution from the Menu Item Build/Build Solution and verify it works.
16. Open the location

<directory>Circuits\MATLAB_Block_Simulation\To_be_completed\DMI_Code\NoiseFi
lter\code\x64\Release and verify that the DLL and the PDB have been generated:

Application Note
Virtual Prototyping in PSpice Page 38 of 80

17. Launch Model Editor from PSpice Accessories.

18. Click Done

19. Click File�Open and select the library generated with DMI Template Code

Generator. This is located in
<directory>/circuits/MATLAB_Block_Simulation/To_be_completed/DMI_Code/NoiseFi
lter/lib

20. Select the component you have just loaded and click on File�Export to Part Library:

21. Click OK. A window indicating that everything worked properly should pop up:

Application Note
Virtual Prototyping in PSpice Page 39 of 80

22. Copy NoiseFilter.lib and NoiseFilter.olb from

<directory>/circuits/MATLAB_Block_Simulation/To_be_completed/DMI_Code/NoiseFi
lter/lib

and paste them in

<directory>/Circuits/MATLAB_Block_Simulation/To_be_completed/Circuit/Library/Cap
ture

23. Launch OrCAD Capture and open the MatlabBlock design located in
<directory>/Circuits/MATLAB_Block_Simulation/To_be_completed/Circuit

24. Click on Add Library, select the NoiseFilter.olb symbol and place it in the schematic:

<directory>/circuits/MATLAB_Block_Simulation/To_be_completed/Circuit/Library/Cap
ture

25. Create a new Simulation Profile and name it Trans.

Application Note
Virtual Prototyping in PSpice Page 40 of 80

26. Complete the values like in the image:

27. Without closing the Settings select Configurations Files and add to Design the
NoiseFilter.lib:

Application Note
Virtual Prototyping in PSpice Page 41 of 80

28. Click OK.
29. Before simulating, place the created NoiseFilter.dll and its .pdb in the Simulation

Profile Folder.

DLL Location:

<directory>/Circuits/MATLAB_Block_Simulation/To_be_completed/DMI_Code/NoiseF
ilter/code/x64/Release

Simulation Profile Location:

<directory>/Circuits/MATLAB_Block_Simulation/To_be_completed/Circuit/MatlabBloc
k-PSpiceFiles/SCHEMATIC1/Trans

30. Simulate and verify it works:
31. Analyze the results. Click on PSpice � Markers � Voltage Level.

32. Place the markers like in the image:

33. Open Probe Window:

Application Note
Virtual Prototyping in PSpice Page 42 of 80

3.4 Capacitor behaviour analysis defined using VerilogA-
ADMS

This module explains the import of a VerilogA file and its translation to a DMI model.
VerilogA import in PSpice is supported using ADMS parser – this is primarily useful for
importing VerilogA compact models.

This Lab will demonstrate:

- An example of a capacitor model written in VerilogA, using 2 parameters to specify
the capacitance value.

- Import of a VerilogA file using Model Editor and translation into PSpice-DMI model.
- Sample simulation and comparison of the results with a regular capacitor simulation.

Steps:

1. Launch Model Editor from PSpice Accessories:

2. Select Model � DMI Template Code Generator.
3. Enter Part Name as cap

NOTE: Part Name should match the module name specified in the VerilogA file.

Application Note
Virtual Prototyping in PSpice Page 43 of 80

4. In the DMI Template code Generator UI, select Part Type as VerilogA-ADMS

5. In Verilog-A File field, enter the path to the cap.va file located in the

VerilogA_component folder:

<directory>/Circuits/VerilogA_Capacitor/To_be_completed/VerilogA_Component

NOTE: The XML Folder is automatically selected by the tool. You do not have to
browse anything.

6. In the Output, select only the DLL Location to:

<directory>/Circuits/VerilogA_Capacitor/To_be_completed/DMI_Code

The cap.va is a VerilogA model for a capacitor which uses 2 parameters to define the
capacitor values: C1 and C2.

 `include "discipline.h"
module cap(p,n);
inout p,n;
electrical p,n;
parameter real c1=0 from [0:inf);

Application Note
Virtual Prototyping in PSpice Page 44 of 80

parameter real c2=0 from [0:inf);
analog
I(p,n) <+ ddt((c1+2*c2)*V(p,n));
endmodule

7. Click OK. The DMI model is auto-generated from the VerilogA file and a log file is

generated listing the translation steps.

8. The generated code is automatically compiled using nmake. If there are no build
errors, the dll and the lib files are generated, and can be directly used in a PSpice
Simulation.

<directory>/Circuits/VerilogA_Capacitor/To_be_completed/DMI_Code/cap/lib

• Dll file created in the folder code:

Application Note
Virtual Prototyping in PSpice Page 45 of 80

• Lib file created in the folder lib:

9. Copy the cap.lib and paste it in
<directory>\circuits\VerilogA_Capacitor\To_be_completed\Circuit\Library\Capture
in order to generate the symbol (olb) to be used in Capture.

10. Copy the DLL and paste it in

<directory>\circuits\VerilogA_Capacitor\To_be_completed\Circuit\Library\DLL

11. Open Model Editor from PSpice Accessories
12. Click on File � Open and look for cap.lib in

<directory>\circuits\VerilogA_Capacitor\To_be_completed\Circuit\Library\Capture

13. Click on File � Export to part library

14. Now open in OrCAD Capture the example design where you are going to evaluate a
capacitor from the default Cadence library and the capacitor you have just defined.
Click on File�Open�Project and select the project located in

<directory>\Circuits\VerilogA_Capacitor\To_be_completed\Circuit\Example.opj

Application Note
Virtual Prototyping in PSpice Page 46 of 80

16. Make double click on Page1 from the schematic Cap:

17. Click on Place Part and select C from the library analog.olb:

Application Note
Virtual Prototyping in PSpice Page 47 of 80

18. Place it in the schematic and change the value to 5n

19. Create a new Simulation Profile and call it Trans:

25. Complete the Simulation profile with these values:

26. Click OK.
27. Run the simulation clicking on Play.
28. In OrCAD Capture click on PSpice � Markers � Voltage Level and place the

markers as in the image:

Application Note
Virtual Prototyping in PSpice Page 48 of 80

29. Analyse the results:

22. Come back to OrCAD Capture, select the DMICap Schematic and with RMB make it
Root. Now you are going to simulate your Verilog-A Cap.

NOTE: If you have not saved, it will ask you automatically. Click on Save.

23. Click on Add Library and select the .OLB you have created

<directory>/Circuits/VerilogA_Capacitor/To_be_completed/Circuit/Library/Capture

Application Note
Virtual Prototyping in PSpice Page 49 of 80

and place the capacitor changing the values of C1 and C2 to 1n. You will find these
properties making double click on the DMICAP.

24. Create a new Simulation profile called Trans, with the same values than before and click
Configuration Files and Libraries:

Application Note
Virtual Prototyping in PSpice Page 50 of 80

25. Add to Design the .lib generated you located in

<directory>/Circuits/VerilogA_Capacitor/To_be_completed/Circuit/Library/Capture

26. Before simulating, you have to place the .DLL in the Simulation Profile Folder you have
just created. Place it in:

<directory>\VerilogA_Capacitor\To_be_completed\Circuit\Example-
PSpiceFiles\DMICap\Trans

27. Simulate and analyse the results placing the markers as done before:

Application Note
Virtual Prototyping in PSpice Page 51 of 80

3.5 Debugging

This section explains how the behaviour of DMI Models can be debugged on the circuit
where it has been designed. There are two options to debug DMI models. To understand
both of them, you will use the project that is located in

<directory>\Circuits\Debugging\Circuit\MatlabBlock.opj

Option 1: Setup path to psp_cmd.exe in Visual Studio

1. Open Visual Studio Community 2013
2. Click File�Open�Project/Solution and search for:

<directory>\Circuits\Debugging\DMI_Code\NoiseFilter\code\noiseFilter.vcxproj

3. Ensure DEBUG profile is selected on the top:

4. Select the project with RMB and select properties:

Application Note
Virtual Prototyping in PSpice Page 52 of 80

5. A window pops up. Click on Debugging and setup three property values:

For this example:

Command:
%CDSROOT%\tools\bin\psp_cmd.exe

Command Arguments:
<directory>\Circuits\Debugging\Circuit\MatlabBlock-
PSpiceFiles\SCHEMATIC1\Trans\Trans.cir

Working Directory:
<directory>\Circuits\Debugging\Circuit\MatlabBlock-PSpiceFiles\SCHEMATIC1\Trans

Application Note
Virtual Prototyping in PSpice Page 53 of 80

6. Verify that you have the same values in the next options:

• Click on Optimization inside of C/C++

Application Note
Virtual Prototyping in PSpice Page 54 of 80

• Click on Debugging inside of Linker:

7. Click Apply and OK.

8. Open file NoiseFilter_user.cpp and add breakpoints clicking on the desired line:

Application Note
Virtual Prototyping in PSpice Page 55 of 80

9. Run the simulation in debug mode

10. Choose Yes on the following message:

11. Observe that simulation stops at breakpoint:

Application Note
Virtual Prototyping in PSpice Page 56 of 80

12. Click on Continue to jump from one breakpoint to another one.

13. Use Visual Studio Watch function to see any variable value

NOTE: If it is said that the project is out of date or you make many changes in the
code, build the project again, copy .dll and .pdb and past them in the Simulation
Profile Trans, so that you can debug properly.

Application Note
Virtual Prototyping in PSpice Page 57 of 80

Option 2: Attach Visual Studio to PSpice

1. Open Visual Studio and load the previous project.

<directory>\Circuits\Debugging\DMI_Code\NoiseFilter\code\NoiseFilter.vcxproj

2. Open the project in OrCAD Capture

<directory>\Circuits\Debugging\Circuit\MatlabBlock.opj

3. Open NoiseFilter_user.cpp and place your breakpoints in the code

4. In Visual Studio, click on Tools�Attached to process:

Application Note
Virtual Prototyping in PSpice Page 58 of 80

5. Select all the SimSrvr.exe available (clicking on Ctrl+LMB) and click on Attach.

6. Click on Run Simulation in PSpice

7. If everything works fine, PSpice keeps running and the pointer remains in VS:

Application Note
Virtual Prototyping in PSpice Page 59 of 80

8. Click on Continue to jump from breakpoint to breakpoint.

9. Use Visual Studio Watch function to see any variable value

Application Note
Virtual Prototyping in PSpice Page 60 of 80

3.6 Hardware in the Loop using Arduino

This module shows Hardware in the Loop using an Arduino Board where the communication
between the physical board and PSpice is done using Serial USB protocol.

This board has been chosen because it is worldwide used for multiple applications, it is
cheap and it allows to demonstrate this new PSpice feature. Of course another boards could
be used.

This example demonstrates:

• The advantages of using Virtual Prototyping in PSpice, focusing it to Hardware in the
Loop, where data flows from PSpice to the board and vice versa.

• How to define a component using DMI Template Code Generator in the context of
Hardware in the Loop.

The steps to be followed to design such example are more or less the same than for Digital
Power Supply, but some extra steps have to be considered. Let start with the next schema:

Steps:

1. Launch Model Editor
2. Select Menu Item Model � DMI Template Code Generator

Enter the data as follows:

Define Arduino Board I/O
with DMI as analog part

type

Define communication
between PSpice and the
board using USB serial
protocol creating VS

project

Define the code you want
to evaluate in Arduino

Define the code you want
to evaluate in PSpice and

generate .dll

Associate macro-model to
schematic on OrCAD

Capture canvas

Run PSpice simulation and
analyze results

Application Note
Virtual Prototyping in PSpice Page 61 of 80

On Terminal Entry, this is what you have to see:

For the DLL Location select please the directory of this example:

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed/DMI_Arduino

3. Click on Device Parameters and define two new parameters as in the image:

Application Note
Virtual Prototyping in PSpice Page 62 of 80

4. Click Apply and OK.

5. Click OK and generate all the files. Automatically a new folder called
ArduinoHILDemo1 (Part Name) is included in

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed/DMI_Arduino
with another two folders: code and lib.

In the code folder you will find the files to be used in Visual Studio to generate the
DLL:

In Lib folder you will find the PSpice Model:

Application Note
Virtual Prototyping in PSpice Page 63 of 80

NOTE: The DLL will be generated when all the files are compiled in VS.

6. Include inside of the folder

<directory>Circuits\Hardware_in_the_Loop\To_be_completed\DMI_Arduino\ArduinoH
ILDemo1\code

the files, which allow the USB Serial transmission of data. They are located in

<directory>Circuits/Hardware_in_the_Loop/To_be_completed/USB_Serial_Protocol

7. Open Visual Studio Community 2013 and click on File�Open�Project/Solution to
load the project:

8. On the solution Explorer Tab select ArduinoHILDemo1, click RMB � Add � Existing
Item and look for the USB Serial Protocol Files.

Application Note
Virtual Prototyping in PSpice Page 64 of 80

9. Select CSerial.cpp and CSerial.h and click Add.

10. Open next files and compare them with the completed ones that are located in
<directory>/Completed/DMI_Arduino in order to analyse the code that was added.
These files define the working of the model and internal configuration of the code so
that the dll works properly using the interface. (Optional).

- ArduinoHILDemo1_user.cpp
- pspArduinoHILDemo1.cpp
- pspArduinoHILDemo1.h

11. Now that you know the differences in terms of code among these files, go to the

directory

<directory>\Circuits\Hardware_in_the_Loop\Completed\DMI_Arduino\ArduinoHILDem
o1\code

copy the files that you can see in point 10 and add them in

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\DMI_Arduino\Arduino
HILDemo1\code

replacing those you have created previously.

Application Note
Virtual Prototyping in PSpice Page 65 of 80

12. Open Visual Studio again and select Release and x64 from the top of the window:

13. Click on Build�Build Solution and generate DLL:

14. Install Arduino IDE in your computer downloading the software from the official
Homepage:

https://www.arduino.cc/en/Main/Software

15. Open the Arduino Code located in

<directory>Circuits\Hardware_in_the_Loop\To_be_completed\Arduino_Code\Exampl
e

16. Connect the Arduino Board with the USB Cable.

17. Click on Tools and make sure that the Port, where the Arduino Board is connected is

selected to COM4.

Application Note
Virtual Prototyping in PSpice Page 66 of 80

18. Upload the code in the Arduino Board clicking on Sketch � Upload:

19. If everything works well, you will see the LED, the pin L and the pin ON turned on.

In Arduino software something like that is shown:

20. Design the Hardware to be simulated:

Application Note
Virtual Prototyping in PSpice Page 67 of 80

Hardware connection schematic:

21. Open OrCAD Capture

22. Select Allegro Design Entry CIS or OrCAD PSpice Designer Plus:

Application Note
Virtual Prototyping in PSpice Page 68 of 80

23. Open the project located in
<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\Circuit\ArduinoHiL.opj

As you can see, everything is defined except the Arduino component.

24. Open Model Editor from PSpice Utilities:

Application Note
Virtual Prototyping in PSpice Page 69 of 80

25. Click on File � Open and load the library that was created automatically when you
defined the Arduino component using DMI Template Code Generator. It should be
placed in
<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\DMI_Arduino\Arduino
HILDemo1\Lib

26. Modify the description introducing the information that is available in the file
“Change_Me” located in

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\DMI_Arduino

Application Note
Virtual Prototyping in PSpice Page 70 of 80

Copy and paste the whole data in your PSpice Model

27. Save.

28. With Model Editor opened, click on File � Export to Part Library to generate the
symbol (.olb), which is being placed in the schematic:

29. Click on OK

Application Note
Virtual Prototyping in PSpice Page 71 of 80

30. Now that your Symbol has been created, open OrCAD Capture and place it. But do
NOT take the symbol you have just created, but the symbol located in

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\Circuit\Library\Capture

as I have reorganized the pins position.

a. Click on Place � Part

b. Click on Add Library

Application Note
Virtual Prototyping in PSpice Page 72 of 80

c. Select Arduino.OLB and place it making double click on the component. When
it is placed, click on H to mirror horizontally and connect it with the pins:

d. As you have placed an Arduino Symbol without an associated PSpice Model,
select the Symbol you have just placed and click RMB:

Application Note
Virtual Prototyping in PSpice Page 73 of 80

e. Click Yes and a windows pops up:

f. Click Next:

g. Associate each Model Terminal yith the corresponding Symbol PIN:

Application Note
Virtual Prototyping in PSpice Page 74 of 80

h. Click on Fertig and next Windows pops up:

i. Click on Update All and OK

31. Now you are ready to define the Simulation Profile. Click on New Simulation with the
name Trans and click on Create:

Application Note
Virtual Prototyping in PSpice Page 75 of 80

32. Define a Time Domain Simulation and fill in the options with the next values:

33. Click on Configuration Files, select Library and add the PSpice Model for the filter and
the Arduino Board:

Application Note
Virtual Prototyping in PSpice Page 76 of 80

Your library for the Arduino Board is in
<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\DMI_Arduino\A
rduinoHILDemo1\lib

The library for the Matlab Filter is in
<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\Circuit\Library\
Capture

34. Click on Probe Window and select the next configuration:

35. Click on OK.

36. In the Schematic click on PSpice � Markers � Voltage Level

and place this marker as in the image:

Application Note
Virtual Prototyping in PSpice Page 77 of 80

37. Before you can simulate Hardware in the Loop, you have to place the DLL’s in the
PSpice Simulation Settings Folder you have just created. Copy your DLL located in

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\DMI_Arduino\Arduino
HILDemo1\code\x64\Release\ArduinoHILDemo1.dll

 and past it in

<directory>Circuits\Hardware_in_the_Loop\To_be_completed\Circuit\ArduinoHiL-
PSpiceFiles\SCHEMATIC1\Trans

38. Do the same with the DLL for the Matlab Filter located in

<directory>\Circuits\Hardware_in_the_Loop\To_be_completed\Circuit\Library\DLL

39. Now connect the hardware to the computer (if it is not already connected) and click
on Run Simulation:

NOTE: If you get a Netlisting Error, you have to connect all the unconnected pins
together.

Application Note
Virtual Prototyping in PSpice Page 78 of 80

40. When the Probe Window opens, click on Tools � Options and select Auto-Update
Intervals as in the image.

41. Test the simulation HiL moving the board, incrementing the sensor temperature or
varying the amount of received light:

Application Note
Virtual Prototyping in PSpice Page 79 of 80

NOTE: Move the voltage Marker you placed to the different nodes to visualize the
different results.

- Temperature Sensor:

- Light Sensor:

- Tilt Sensor:

Application Note
Virtual Prototyping in PSpice Page 80 of 80

